
Graph Grammars for Active Perception
Luis J. Manso, Pablo Bustos, Pilar Bachiller and Marco A. Gutierrez

University of Extremadura,
Cáceres, Extremadura.

lmanso@unex.es

Abstract—The complexity of the applications in which robots
are being used does not stop growing. Different solutions such as
sophisticated control architectures have been proposed in order
to deal with complexity in robot control. These solutions make
robotic systems more robust, scalable and easier to distribute,
understand and monitor. However, it is still not clear how
to cope with the complexity of the interaction dynamics that
underlie the perception of the environment. With this issue
in mind this paper presents the concept of cognitive graph
grammar and two algorithms that make use of it. Cognitive graph
grammars are a grammar-based theoretical framework designed
to support cognitive perception and, especially, the active nature
of perception. They provide a means to describe how graph-
based models can be generated and the behaviors to execute
depending on the perceptual context. This is done in such a way
that the information provided using this formalism can be used
for different perceptive purposes at the same time, such as to
link action and perception or to diminish perceptive errors. The
paper also describes an experiment in which a cognitive graph
grammar is used in an autonomous robot in order to efficiently
model an environment made of rectangular rooms with obstacles.

I. INTRODUCTION

It would be desirable to have robots able to interact with
non-trivial entities (e.g., compound objects, people). In order
to perform these tasks robots have to perceive and model their
environment to some extent. Unlike in the earliest experiments
of robotics, the floor is not necessarily restricted to textureless
shadow-free surfaces anymore, and objects are not necessarily
simple perfectly shaped boxes. Nevertheless, the environments
in which robots operate are not random. In order to build
actually intelligent robots, a priori knowledge about the envi-
ronment must be properly used.

The complexity that roboticists have to face when de-
veloping autonomous robotic systems has been successfully
handled from different points of view. Control architectures
such as those in [1], [2] suggest how to organize control
and information flows. Technologies such as [3], [4] handle
implementation issues from a software engineering point of
view using component-oriented programming. However, none
of these approaches can be directly used as a tool to support
perception or to ease the binding of perception and action. The
control logic of active perception algorithms still tends to be
formed by hard-coded if-then-else constructs that map robot
proprioception and its world model to specific perceptual states
and actions, which is error-prone. Moreover, they rarely take
into account context information, which is useful to produce
robust and coherent environment interpretations. Thus, de-

spite the use of the previously mentioned technologies makes
robotic systems better designed and easier to manage, the
complexity of the control logic associated with the perception
of the environment is hardly reduced. This paper presents
cognitive graph grammars, a theoretical framework that helps
roboticists building context-aware active perception systems.

When a robot builds symbolic models of its surroundings
it generally does so by recording the perceived environment
elements and their relationships. Since this can be seen as
the generation of a graph where nodes represent the modeled
symbols and edges represent the relationships between them, it
is interesting to formally describe how the robot might do that.
Precisely, graph grammars describe the rules governing the
formation of graphs with a specific structure. Graph grammars
generalize the concept of string grammars so that productions
can also be applied to graphs. In fact, strings can be seen
as undirected graphs such that all nodes –characters–, except
those at sentence endings, have an edge linking them to each
of their adjacent characters. Thus, graph grammars extend
string grammars in order to support input data with arbitrarily
complex connection patterns.

This paper introduces the concept of cognitive graph gram-
mar (CGG), a graph grammar-based formalism designed to
support symbolic active perception. They provide a means
to give raise to different active-perceptual mechanisms by
describing how graph-based models can be generated. Build-
ing on this formalism, additional algorithms are provided so
that descriptions based on CGG can be used for different
purposes, such as linking action and perception or improving
perception robustness. The paper also provides a proof-of-
concept experiment in which a CGG is used to model an
environment made of rectangular rooms with obstacles.

The remaining of the paper is organized as follows. Sec-
tion II reviews previous work on graph grammars and active
perception. The core of the paper is found in section III. It pro-
vides an introduction to the most widely used graph grammar
formalisms, describes the limitations that make necessary a
new one, and details the concept of cognitive graph grammars
both from a formal and practical point of view. It also describes
the different benefits of using CGGs and the perceptual phe-
nomena that can arise when using them. Section IV describes
an example of a CGG used in order to perform topological
mapping along with the experimental results obtained using it.
Finally, section V presents the conclusions and future work.



II. PREVIOUS WORK

Besides active perception, grammars have been used in
robotics and artificial vision for a wide range of applications.
An algorithm for graph verification (i.e., given a graph and a
graph grammar, check if the graph can be generated using the
grammar) is proposed in [6]. In this work, only the vertices
of the graphs can be labeled. Graph grammars are used in [7]
to achieve self-configuring adaptable software architectures.
In this work graphs are of fixed order. A similar approach for
coordinating multi-robot systems where robots are represented
by graph vertices is proposed in [8]. The graph, which is
shared by all the robots of the system, is also of fixed order.
Coordination is achieved by modifying the linking pattern and
the label (i.e., role) of the robots.

A series of works by the same group is presented in [9],
[10] and [11]. In [9] and [11], an attributed graph grammar is
designed in order to parse rectangle layouts from images of
man-made scenes. The authors consider rectangles as terminal
symbols and layouts as production rules. Bottom-up and top-
down mechanisms are used in order to improve rectangle
detection and parsing. Since different possible models can ex-
plain input images, the algorithm chooses the one maximizing
the posterior probability or minimizing a descriptor length.
A similar approach is used for segmenting and recognizing
generic scenes in [10]. A similar approach to the one described
in [11] is used in [12] in order to represent and recognize
objects. In this case, both the set of primitives and production
rules are wider, but the foundations are the same. These
approaches have two main differences from what is proposed
in this paper: a) they are based on string grammars, reducing
what can be solved using their approach; b) they use static
input data, which is a very hard restriction for robotics (action
is not taken into account).

Graphs are used for task planning in [13]. It also covers
how plans can be dynamically modified as sub-tasks are ac-
complished or conditions change. Grammar rules are proposed
in order to modify the current plan.

Spatial Random Tree Grammars are proposed in [14] for
image parsing. They are context-free grammars with at most
two children in which rules are labeled with information for
determining the spatial distribution of their nodes (i.e., ver-
tically or horizontally distributed). While in string grammars
this is not necessary (i.e., productions are always horizontally
distributed), it guarantees the unambiguous interpretation of
parse trees from graph grammars. In this work, a probability
distribution is also associated to production rules so the
probability of a specific parse can be estimated.

III. COGNITIVE GRAPH GRAMMARS

Unlike graph grammars, string grammars do not generally
provide enough expressive power to be used in order to build
environmental representations. On the other hand, string gram-
mars unambiguously describe how the production rules can be
applied. This is because in these grammars two symbols are
connected if and only if they are in contiguous positions within
the sentence. When a string symbol pattern p1 is replaced by

Fig. 1. Example of how the ’avoid’ decoration and the wildcard symbol can
be used to dismiss any pattern not specifically considered on the right-hand
side of grammar rules.

p2 it is automatically linked to –and only to– the pattern on
the left and right sides of p1, in the same order. Depending
on the formalism used, this assumption does not hold for
graph grammars since the connection pattern is not fixed or
restricted to a specific order. Additionally, none of the previous
graph grammar formalisms were conceived with robots or ac-
tive perception in mind. Different graph grammar formalisms
have been proposed aiming to remove any ambiguity in the
connection patterns of the nodes involved [5]. However, they
do so by assuming a specific behavior: some of them assume
that dangling edges should be automatically removed; others
assume that dangling edges prevent productions from being
applied. In order to avoid ambiguity without limiting what
can be expressed by graph grammars they must also allow
to specify negative subpatterns (i.e., parts of the patterns that
should not exist in order to apply the rule). Since no formalism
provides mechanisms to remove these restrictions, it was found
necessary to create a more flexible formalism.

A. CGG formalism

The cognitive graph grammar formalism follows the same
principles as single-pushout [5] but, in order to overcome
the previously mentioned limitations three modifications are
proposed: a) the elements of the left hand side of the rules can
be decorated with an avoid attribute in order to dismiss those
matches containing elements decorated in such way (expressed
by filling them with gray color); b) productions may be
accompanied with first-order logic sentences specifying con-
ditions and the operations performed by the rule if the desired
behavior differs from the one of single-pushout; c) CGGs have
the ’∗’ NT symbol, which matches any other symbol. Figure 1
and table I(e) are examples of the use of the avoid attribute.
From a formal point of view, cognitive graph grammars are
defined as a seven tuple (N,T, P,B,AV , AE , PB) such that:

• N and T are the mutually exclusive non-terminal and
terminal alphabets, respectively. In particular, N must
contain the start and wildcard symbols (S and ∗).

• P is the set of production rules.
• B is the set of possible perceptive behaviors.
• AV and AE are the attribute alphabet for vertices and

edges, respectively.
• PB is a function mapping P to B.

This formalism allows to unambiguously specify a graph
grammar without assuming any specific behavior, as well as
to relate behaviors to grammar rules.



B. CGGs properties
As seen in section II, grammars can be used as a tool to sup-

port perception. This section describes how to achieve different
grammar-based perception-oriented techniques using CGGs.
To the knowledge of the authors, all published grammar-
based perception techniques can be classified in one of the
following types: a) bottom-up parsing, b) model verification, c)
context-aware perception restrictions, and d) covert perception.
In addition to these, CGGs can also be used to associate
perception and action. The remaining of the section describes
how to achieve each of these phenomena using CGGs.

Bottom-up parsing is the most common application of
grammars: given a sample from the input space, it is parsed
in order to recognize its structure. For some applications it
might only be necessary to perform model verification. It
can be seen as a bottom-up parsing where the parse result is
ignored, only providing whether or not there was any result.

It is also desirable that robot perception would dynami-
cally adapt to the scenario in which robots are located and
their conditions. Here we distinguish between a) passively
adapting to the environment by restricting what might be
perceived, context-aware restrictions; and b) high perceptual
layers actively providing top-down information to the bottom
perceptual layers in order to influence its output, covert
perception [16].

Additionally, we propose using CGGs to select the appro-
priate perception strategy or behavior according to the context.
The subset of rules that can be potentially triggered next can
be computed by analyzing the grammar rules and the current
model. Thus, by associating behaviors to rules, the compatible
behavior set is computed as the set of behaviors associated to
the rules that can be potentially triggered. It is worth noting
that all previous work regarding the use of grammars for
perception were applied to static images. The remaining of
the section elaborates how these perceptual techniques can be
implemented using CGGs.

1) Bottom-up parsing: Regular parsing algorithms are de-
signed to work with static and complete input data. Robot
perception generally entails movements that allow robots to
sense different parts of the environment. Since these move-
ments change the input data, the standard approaches can not
be used to parse it. The process of bottom-up parsing in CGGs
is performed by running the rules that are compliant with the
current model as long as the terminal symbols they introduce
are actually being perceived. When multiple possible rules can
be triggered at the same time, the approach presented in [14]
can be used in order to provide the most probable parse.

2) Context-aware restrictions on perception: A classic ex-
ample of this kind of phenomena in humans can be found
in [15]: the same visual input can be perceived as different
objects depending on the context. Graph grammars express
how graphs (symbolic models in our case) can be built. By
doing so they also describe how they can not be built, thus
providing the power to support context-aware perception. By
restricting which world elements can be perceived at each
moment according to the limitations of the grammar, the

number of false positives (i.e., misrecognized world elements)
can be reduced. In order to illustrate this, a simple two-rule
grammar example is provided in equation 1. The formalism
is not used in this case because this specific property can be
provided by all kind of grammars, not just CGGs.

S =⇒ arm ·A
A =⇒ forearm

(1)

If a robot using this grammar is certain that it perceived
the arm of a person (so its current model is ′arm · A′) it
can unquestionably discard any other arms. A pseudo-code
implementation is shown in algorithm 1. For every potentially
applicable rule, it computes the set of non-terminal symbols
appearing only on the RHS (not on the LHS) and returns the
union of those sets. This set contains the world elements that
can be perceived given the grammar and the current model.

Algorithm 1 Contex-aware restrictions algorithm:
Require: h: Input graph
Require: G: CGG such that G = (N,T, P,B,AV , AE , PB)

1: U ← ∅
2: forall p = (lhs, rhs) ∈ P do
3: if applicable(p, h) then
4: forall s ∈ (rhs.V − lhs.V ) do
5: if terminalSymbol(s) then
6: U ← U ∪ s
7: end if
8: end forall
9: end if

10: end forall
11: return U

3) Covert perception: The information provided by gram-
mars can also be used to influence bottom-up perception, not
just to filter its output. Thus, grammars are also a valid frame-
work to enable covert perception [16]. A priori knowledge
of the world can be used to influence bottom-up perception
by enforcing or inhibiting the detection of specific parts of
the environment. Thus, grammars can not only reduce false
positives in object detection but also reduce false negatives.
The grammar rule described in table I(b), is a good example
of this. It is further explained in section IV. When parts of
the object to detect are occluded, bottom-up object detectors
tend to decrease their effectiveness dramatically. The partial
pattern detected can be used to compute the probability of a
false negative. This can be expressed using the Bayes theorem
as in equation 2. In the equation, F stands for the event “a not
detected entity should be forced into the model”, and C stands
for the event of the robot having a specific context (potentially
partial input).

p(F |C) =
p(C|F )p(F )

P (C)
(2)

This is one of the most interesting applications of graph
grammars. Examples of this type of technique can be found
in [9], [10], [11] or [12].



Fig. 2. Overhead view of the environment used for the experiments. It is
composed of four rectangular rooms connected in a loop. The robot is the
squared object on the right-bottom part of the image. Objects are placed in
the environment in order to prove the robustness of the approach.

4) Action selection: Generally, given the grammar and the
current graph, only a subset of rules can be potentially applied.
Since CGG rules have associated behaviors, computing the
subset of potentially applicable rules is equivalent to compute
the candidate set of perceptual actions. It can be used to enable
robots to decide what to do next. Depending on the grammar
and the context, the subset can be formed by several or a single
action. Algorithm 2 details how to compute the action set.

Algorithm 2 Action selection algorithm:
Require: h: Input graph
Require: G: CGG such that G = (N,T, P,B,AV , AE , PB)

1: U ← ∅
2: forall p ∈ P do
3: if applicable(p, h) then
4: U ← U ∪ PB(P )
5: end if
6: end forall
7: return U

The novelty of the underlying idea of CGGs in this respect
is not the well-known idea of associating behaviors to robot
states, but to do it by defining the perceptive state of robots as
their set of potentially applicable rules. Moreover, algorithm 2
can be easily extended to only take into account those rules
which are of interest depending on the robot goal.

IV. EXPERIMENT

In order to illustrate the usage of CGGs, this section
provides a real example of a grammar used in a robot that
models its environment. In particular, the objective of this
grammar is to enable a robot to model a simple world made of
rectangular connected rooms in which obstacles can be found.
Section IV-B describes the benefits obtained from the use of
CGGs. Section IV-C provides experimental results obtained
using this grammar.

A. Grammar definition

1) Grammar alphabets: The first step is to define the
entities that the world model will be composed of. This is
an arbitrary decision: it is up to the roboticist to decide which
symbols to use. It will depend on the environment or object
to model, and the desired level of detail. For this experiment
it was decided to use symbols for rooms, doors and obstacles.

r Used for rooms.
d Used for doors. Doors will link two different rooms.
o For obstacles. Obstacles will be located within rooms.
It is also necessary to define the attributes that the symbols

will have. In particular, rooms, doors and obstacles have their
position (x and y) and their dimensions (width and length).
Moreover, rooms also have an active attribute that is true for
the room in which the robot is located and false otherwise. As
can be seen in table I, attributes can be used in order to enable
or disable the application of the different rules. The resulting
alphabets are shown in equation number 3.

N = {S, ∗}
T = {r, d, o}

AV = {width, length, x, y, active}
AE = ∅

(3)

2) Grammar rules: Once the entities to model are known,
the next step is to write the rules that will guide the perception
process. In most cases this is a cyclic task (i.e., the symbols
may depend on the rules and vice versa), and sometimes it
will be necessary to introduce new non-terminal symbols.

Rule 0 specifies that the start symbol can be transformed
into a room. This is the only rule with the start symbol (S) in
its left hand side, so the start symbol can only be transformed
into a room. This implies that, when the perception process
starts, the first task robots have to perform is to model the room
in which they are located. Rule 1 describes how the discovery
of new rooms transforms the model. The rule creates a new
room symbol and makes it adjacent to the room in which
the robot is located. It is triggered when the robot perceives
or goes through a door when there is only one room in the
model or when there are no close rooms to perform loop-
closing with. Rule number 2 is similar to the rule number 1,
but applicable to objects instead of rooms. It links obstacles to
rooms, so it is used when the robot perceives new obstacles.
Rule 3 is used for loop closing, when the robot realizes that
two rooms previously modeled as disconnected are actually
adjacent. In this case, a new door is included in the model
without including a new room. Rule 4 is also used for loop
closing. It describes how the event of finding out that two
rooms that were thought to be different are actually the same
would affect the graph. This happens when the robot closes
a loop without recognizing that the new room it entered is
already known. Both rooms collapse and all the ingoing and
outgoing links are redirected from r1 and r2 to the new room
r3. The formal descriptions of the rules are shown in table I.
The resulting P and B sets (containing rules and behaviors)



TABLE I
EXAMPLE RULE 0

(a) Rule 0

Conditions:
Operations: [r2.active← true]
Behavior: “explore room”.

(b) Rule 1

Conditions: [r1.active = true]
Operations: [r1.active← false];

[r3.active← true]
Behavior: ”explore room“.

(c) Rule 2

Conditions: [r1.active = true]
Operations:
Behavior: “find new room“.

(d) Rule3

Conditions: [r1.active = true]
Operations:
Behavior: “find new room“.

(e) Rule4

Conditions: [r1.active = true]
Operations: [r1.active← false];

[r4.active← true];
[∀a ∈ (Ar1 ∪Ar2 ) Ar4 ← Ar4 ∪ a]

Behavior: ”explore room“.

are shown in equations 4 and 5. The PB mapping associating
a behavior to each of the rules, is shown in equation 6.

P = {Rule0, Rule1, Rule2, Rule3, Rule4} (4)

B = {”explore room”, ”find new room”} (5)

PB =


Rule0 =⇒ ”explore room”
Rule1 =⇒ ”explore room”
Rule2 =⇒ ”find new room”
Rule3 =⇒ ”find new room”
Rule4 =⇒ ”explore room”

(6)

B. Implications of the use of CGGs

In order to implement the described grammar in a robot
it is necessary to have a detector for each of the elements
the model will be composed of (e.g., rooms, obstacles). The
role of the bottom-up part is to detect atomic world elements
and provide them to higher perceptive levels. Top-down might
influence or force the detection of parts of the environment.
In the case of the previously described grammar, this happens

Fig. 3. World model after the robot entered and modeled the initial room.

when the robot finds a door on a single room model or there
are no rooms to close the loop with: since, in those cases, rule
1 is the only compatible rule introducing a door in the model,
the only interpretation is that at the other side of the door
there is a new room not previously seen. The grammar-based
restrictions imposed by the available productions make the
robot ignore impossible or useless signals. For example, the
grammar disables the robot to close the loop with an adjacent
room in the way that rule 4 does. Another example is that,
when the system is started, obstacles, doors and other adjacent
rooms are automatically ignored until the robot models the
room in which it is located. This situation would be harder to
specify and understand using regular programming languages,
and would increase the probability of errors.

CGGs provide a means to select the most appropriate robot
behavior. In the situation of the last example, the world model
would be composed of a single node with the start symbol
(S) on it. In this scenario, the only applicable rule is the one
that substitutes S with a room node (rule number 0). Thus, the
only acceptable behavior would be ”explore room“. Once the
room is detected, the robot will not be able to trigger rule 0
anymore. CGGs enable robots to compute the set of potential
actions compliant with the model and the rules. However,
since the set might contain several choices, CGGs can not
always decide what the robot should do. It is possible that
the robot selects a non-achievable behavior, for example, if
it tries to find a new room when there are no more rooms.
Moreover, in more complex scenarios there may be different
potentially applicable rules (potentially interesting actions).
These two situations make necessary an additional planning
or homeostatic algorithm in order to reach a final decision.

C. Experimental Results

The grammar described in section IV-A has been imple-
mented in an autonomous robot. Figure 2 shows an over-
head view of the environment. The experiment starts with
a world model containing only the start symbol. According
to the behavior selector, the robot adopts the ”explore room“
behavior, expecting to run rule 0. Figure 3 shows the
metric reconstruction of the map after the behavior models
the room. Once the robot accomplishes the task, the robot
could potentially apply rules 1 and 2. Thus, it interleaves their
associated behaviors in order to discover the next room. By
repeating this process (computing the candidate behaviors and
interleaving them) the robot gets to the point in which all
rooms and obstacles are modeled. This is shown in figure 4.
Figure 5 shows the final graph model. As it can be depicted



Fig. 4. Metric reconstruction from the topological model after the robot
visited all the rooms.

Fig. 5. Structure of the graph after the robot visited all the rooms.

in figure 4, the metric reconstruction shows overlapping errors
caused by odometry and sensor uncertainty. These errors are
canceled by performing a stochastic gradient descent search
in a parameter space defined by the size of the rooms and the
positions of the doors (see [17]). The minimization is weighted
by the uncertainty of the models, as in standard non-linear
graph optimization. This improves the overall result and allows
the robot to perform robust loop-closings. The final metric
reconstruction is shown in figure 6.

V. CONCLUSIONS

This paper presented the concept of cognitive graph gram-
mars, the first grammar-based approach designed for active
perception. CGGs provide a means for linking perception and
action in order to gather the necessary information robots
might need in a robust and context-aware way. At the same

Fig. 6. Final metric reconstruction, after the optimization process.

time they have interesting top-down properties and perceptive
restrictions that help avoiding perception errors (both false
negatives and positives). Section IV-C presented a proof of
concept experiment, proving CGGs to be a useful and promis-
ing approach. We are currently experimenting with more com-
plex grammars and studying methods to automatically infer
formal knowledge from grammars. Efforts towards creating
a tool in order to automatically translate CGG specifications
into regular programming languages using a Domain Specific
Language for CGGs are also being made.

ACKNOWLEDGMENT

This work has been supported by project IPT430000-2010-
2 funded by Spanish Ministry of Science and Innovation, and
by project IB10062 of the Extremaduran Government.

REFERENCES

[1] E. Gat, “On three-layer architectures”, in Artificial Intelligence and
Mobile Robots, p. 195–210, 1998.

[2] M.N. Nicolescu and M.J. Matarić, “A hierarchical architecture for
behavior-based robots”, in Proc. of Int. Joint Conf. on Autonomous
Agents and Multi-Agent Systems, pp. 227–233, 2002.

[3] L.J. Manso, P. Bachiller, P. Bustos, P. Nunez, R. Cintas, and L. Calderita,
“RoboComp: a tool-based robotics framework”, in Proc. of Conf. on
Simulation, Modeling and Programming for Autonomous Robots (SIM-
PAR), pp. 251–262, 2010.

[4] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger,
R. Wheeler, and A. Ng, “ROS: an open-source robot operating system”,
in Proc. of ICRA Workshop on Open Source Software, 2009.

[5] R. Heckel, “Graph transformation in a nutshell”, Electronic Notes in
Theoretical Computer Science, vol. 148, no. 1, pp. 187–198, 2006.

[6] J. Bauer and R. Wilhelm, “Abstract Interpretation of Graph Grammars”,
in Simulation and Verification of Dynamic Systems, 2006.

[7] I. Bousassida, C. Chassor, and M. Jmaiel, “Graph grammar-based
transformation for context-aware architectures supporting group com-
munication”, Nouvelles Technologies de l’Information, vol. L, no. 19,
pp. 29–42, 2010.

[8] B. Smith, A. Howard, J.M. McNew, J. Wang, and M. Egerstedt, “Multi-
robot deployment and coordination with embedded graph grammars”,
Journal of Autonomous Robots, vol. 26, no. 1, pp. 77–98, 2009.

[9] S.C. Zhu, R. Zhang, and Z. Tu, “Integrating bottom-up/top-down for
object recognition by data driven markov chain monte carlo”, in Proc.
of Conf. in Computer Vision and Pattern Recognition, vol. 1, pp. 738–
745, 2000.

[10] Z. Tu, X. Chen, A.L. Yuille, and S.C. Zhu, “Image parsing: Unifying
segmentation, detection and recognition”, Journal of Computer Vision,
vol. 63, no. 2, pp. 113–140, 2005.

[11] F. Han and S.C. Zhu, “Bottom-up/top-down image parsing with attribute
grammar”, IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 31, no. 1, pp. 59-73, 2009.

[12] L. Lin, T. Wu, J. Porway, and Z. Xu, “A stochastic graph grammar for
compositional object representation and recognition”, Journal of Pattern
Recognition, vol. 42, no. 7, pp. 1297–1307, 2009.

[13] J.M. Hasemann, “A robot control architecture based on graph grammars
and fuzzy logic”, in Proc. of Conf. on Intelligent Robots and Systems,
vol. 3, pp. 2123–2130, 1994.

[14] J.M. Siskind, J.J. Sherman, I. Pollak, M.P. Harper, and C.A. Bouman,
“Spatial random tree grammars for modeling hierarchal structure in im-
ages with regions of arbitrary shape”, Transactions on Pattern Analysis
and Machine Intelligence, vol. 29, no. 9, pp. 1504–1519, 2007.

[15] A. Torralba, K.P. Murphy, and W.T. Freeman, “Using the forest to see
the trees: exploiting context for visual object detection and localization”,
Communications of the ACM, vol. 53, no. 3, pp. 107–114, 2010.

[16] H. Svensson, A. Morse, and T. Ziemke, “Neural pathways of embodied
simulation”, in Anticipatory Behavior in Adaptive Learning Systems,
pp. 95–114, 2009.

[17] P. Bachiller, P. Bustos, and L.J. Manso, “Attentional Behaviors for
Environment Modeling by a Mobile Robot”, in Stereo Vision, pp. 17–40,
InTech, 2011.


